Behavior Histograms for Action Recognition and Human Detection
نویسنده
چکیده
This paper presents an approach for human detection and simultaneous behavior recognition from images and image sequences. An action representation is derived by applying a clustering algorithm to sequences of Histogram of Oriented Gradient (HOG) descriptors of human motion images. For novel image sequences, we first detect the human by matching extracted descriptors with the prototypical action primitives. Given a sequence of assigned action primitives, we can build a histogram from observed motion. Thus, behavior can be classified by means of histogram comparison, interpreting behavior recognition as a problem of statistical sequence analysis. Results on publicly available benchmarkdata show a high accuracy for action recognition.
منابع مشابه
Action Change Detection in Video Based on HOG
Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کامل’Histograms of Oriented Gradients for Human Detection’ versus ’Fast Human Detection Using a Cascade of Histograms of Oriented Gradients’
Dalal and Triggs [1] studied the question of feature sets for robust visual object recognition. They first considered existing edge and gradient based descriptors and then they showed experimentally that grids of Histograms of Oriented Gradients (HoG) descriptors significantly outperform existing feature sets for human detection. After this they studied the influence of each stage of the comput...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملRecognition and action for scene understanding
Scene Understanding has become a popular topic in Computer Science which combines issues such as attention in cognitive systems, object detection and recognition, global scene recognition and human sensing Hence it involves joining efforts and sharing knowledge from recognition and human sensing. Hence, it involves joining efforts and sharing knowledge from We are introducing the 2 nd edition o...
متن کامل